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Abstract In two earlier articles we constructed algebraic-geometric families of genus one
(i.e. elliptic) Lie algebras of Krichever–Novikov type. The considered algebras are vector
fields, current and affine Lie algebras. These families deform the Witt algebra, the Virasoro
algebra, the classical current, and the affine Kac–Moody Lie algebras respectively. The con-
structed families are not equivalent (not even locally) to the trivial families, despite the fact
that the classical algebras are formally rigid. This effect is due to the fact that the algebras
are infinite dimensional. In this article the results are reviewed and developed further. The
constructions are induced by the geometric process of degenerating the elliptic curves to
singular cubics. The algebras are of relevance in the global operator approach to the Wess–
Zumino–Witten–Novikov models appearing in the quantization of Conformal Field Theory.

Keywords Deformations of algebras · Rigidity · Wess–Zumino–Witten–Novikov models ·
Krichever–Novikov algebras · Conformal field theory

1 Introduction

Deformation theory plays a crucial role in all branches of mathematics and physics. In
physics the mathematical theory of deformations has proved to be a powerful tool in mod-
eling physical reality. The concepts symmetry and deformations are considered to be two
fundamental guiding principle for developing the physical theory further. From the mathe-
matical point of view considering deformed objects will give additional information about
the original object itself, in particular, how is its relation to “neighbouring” objects. This
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can be made precise with the notion of moduli space, classifying inequivalent objects of
the same type. The moduli space should be equipped with a “geometric” structure such that
“nearby points” should be also “nearby” in the sense of deforming the structure of the initial
object. Moreover, assuming that such a moduli space exists, its dimension should be equal to
the number of inequivalent deformation directions. Maybe there exists even a deformation
family containing every possible deformation.

Clearly, this general remarks are rather vague. To make them more precise first one has
to be more precise about the structure to deform. A very famous and well-developed domain
is the deformation theory of complex analytic structures of a compact complex manifold M .
We do not have the place to recall here this theory, but refer only to [17] for results and
details. Let us only mention that a fundamental role is played by the first cohomology space
H1(M,TM) of M with values in the holomorphic tangent sheaf TM . In particular, if this space
is trivial, M will be rigid, i.e. it cannot be deformed in something which is not isomorphic
to it.

Here we will deal with deformations of Lie algebras, in particular of such of infinite
dimension. Formal deformations of arbitrary rings and associative algebras, and the related
cohomology questions, were first investigated by Gerstenhaber, in a series of articles [8–10].
The notion of deformation was applied to Lie algebras by Nijenhuis and Richardson [15, 16].

The cohomology space related to deformations of a Lie algebra L is the Lie algebra two-
cohomology H2(L,L) of L with values in the adjoint module. We will explain this in Sect. 3.
As long as the Lie algebra is finite-dimensional, the relation is rather tight. In particular, if
the cohomology space vanishes, the Lie algebra will be rigid in all respects.

But the algebras which are e.g. of relevance in Conformal Field Theory, integrable sys-
tems related to partial differential equations, etc. are typically infinite dimensional. We are
interested here in these algebras. We showed in two articles [6, 7] that the relation to coho-
mology is not so tight anymore. In particular we constructed nontrivial geometric deforma-
tion families for the Witt algebra (resp. its universal central extension the Virasoro algebra)
and for the current algebras (resp. their central extensions the affine algebras), despite the
fact that the cohomology spaces for those algebras are trivial and hence the algebras are
formally rigid [4, 14]. This is a phenomena which in finite dimension cannot occur.

Here we report on our results and the constructions to be found in [6, 7] and continue our
investigation. The Witt algebra is the algebra consisting of those meromorphic vector fields
on the Riemann sphere which are holomorphic outside {0,∞}. A basis and the associated
structure is given by

ln = zn+1 d

dz
, n ∈ Z, with Lie bracket [ln, lm] = (m − n) ln+m.

The Virasoro algebra is its universal central extension

[ln, lm] = (m − n)ln+m + 1

12
(m3 − m)δn,−mt, [ln, t] = 0,

with t an additional basis element which is central.
Furthermore we consider the case of current algebras ḡ = g ⊗ C[z−1, z] and their central

extensions ĝ, the affine Lie algebras. Here g is a finite-dimensional Lie algebra (which for
simplicity we assume to be simple). With the Cartan–Killing form β the central extension ĝ

is the vector space ḡ ⊕ t C endowed with the Lie bracket

[x ⊗ zn, y ⊗ zm] = [x, y] ⊗ zn+m − β(x, y) · n · δ−n
m · t,

[t, ĝ] = 0, x, y ∈ g, n,m ∈ Z.

As already mentioned, these algebras are rigid.
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The families we construct, appear as families of higher-genus multi-point algebras of
Krichever–Novikov type, see Sect. 4 for their definitions. Hence, they are not just abstract
families, but families obtained by geometric processes. The results obtained do not have
only relevance in deformation theory of algebras, but they also are of importance in areas
where vector fields, current, and affine algebras play a role.

A very prominent application is two-dimensional conformal field theory (CFT) and its
quantization. It is well-known that the Witt algebra, the Virasoro algebra, the current alge-
bras, the affine algebras, and their representations are of fundamental importance for CFT
on the Riemann sphere (i.e. for genus zero), see [1]. Krichever and Novikov [11–13] pro-
posed in the case of higher genus Riemann surfaces (with two insertion points) the use of
global operator fields which are given with the help of the Lie algebra of vector fields of
Krichever–Novikov type, certain related algebras, and their representations (see Sect. 4 be-
low).

Their approach was extended by Schlichenmaier to the multi-point situation (i.e. an ar-
bitrary number of insertion points was allowed) [18–21]. The necessary central extensions
where constructed. Higher genus multi-point current and affine algebras were introduced
[23]. These algebras consist of meromorphic objects on a Riemann surface which are holo-
morphic outside a finite set A of points. The set A is divided into two disjoint subsets I

and O . With respect to some possible interpretation of the Riemann surface as the world-
sheet of a string, the points in I are called in-points, the points in O are called out-points,
corresponding to incoming and outgoing free strings. The world-sheet itself corresponds to
possible interaction. This splitting introduces an almost-graded structure (see Sect. 4) for the
algebras and their representations. Such an almost-graded structure is needed to construct
representations of relevance in the context of the quantization of CFT, e.g. highest weight
representations, fermionic Fock space representations, etc.

In the following we give more information on a special model. In the process of quanti-
zation of conformal fields one has to consider families of algebras and representations over
the moduli space of compact Riemann surfaces (or equivalently, of smooth projective curves
over C) of genus g with N marked points. Models of most importance in CFT are the Wess–
Zumino–Witten–Novikov models (WZWN). Tsuchiya, Ueno and Yamada [29] gave a sheaf
version of WZWN models over the moduli space. In [27, 28] Schlichenmaier and Shein-
man developed a global operator version. In this context of particular interest is the situation
I = {P1, . . . ,PK}, the marked points we want to vary, and O = {P∞}, a reference point. We
obtain families of algebras over the moduli space Mg,K+1 of curves of genus g with K + 1
marked points, and we are exactly in the middle of the main subject of this article. In [27]
and [28] it is shown that there exists a global operator description of WZWN models with
the help of the Krichever Novikov objects at least over a dense open subset of the moduli
space. Starting from families of representations V of families of higher genus affine algebras
(see Sect. 4 for their definition) the vector bundle of conformal blocks can be defined as the
vector bundle with fibre (over the moduli point b = [(M, {P1, . . . ,PK}, {P∞})]) the quotient
space of the fibre Vb modulo the subspace generated by the vectors obtained by the action
of those elements of the affine algebra which vanish at the reference point P∞ (i.e. the fibre
is the space of coinvariants of this subalgebra).

The bundle of conformal blocks carries a connection called the Knizhnik–Zamolodchikov
connection. In its definition an important role is played by the Sugawara construction which
associates to representations of affine algebras representations of the (almost-graded) cen-
trally extended vector field algebras, see [26]. A certain subspace of the vector field alge-
bra (assigned to the moduli point b) corresponds to tangent directions on the moduli space
Mg,K+1 at the point b.
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Now clearly, the following question is of fundamental importance. What happens if we
approach the boundary of the moduli space? The boundary components correspond to curves
with singularities. Resolving the singularities yields curves of lower genera. By geometric
degeneration we obtain families of (Lie) algebras containing a lower genus algebra (or some-
times a subalgebra of it), corresponding to a suitable collection of marked points, as special
element. Or reverting the perspective, we obtain a typical situation of the deformation of
an algebra corresponding in some way to a lower genus situation, containing higher genus
algebras as the other elements in the family. Such kind of geometric degenerations are of
fundamental importance if one wants to prove Verlinde type formula via factorization and
normalization technique, see [29].

By a maximal degeneration a collection of P
1(C)’s will appear. Indeed, the examples

considered in this article are exactly of this type. The deformations appear as families of vec-
tor fields and current algebras which are naturally defined over the moduli space of genus
one curves (i.e. of elliptic curves, or equivalently of complex one-dimensional tori) with
two marked points. These deformations are associated to geometric degenerations of elliptic
curves to singular cubic curves. The desingularization (or normalization) of their singulari-
ties will yield the projective line as normalization. We will end up with algebras related to
the genus zero case. The full geometric picture behind the degeneration was discussed in
[22]. In particular, we like to point out, that even if one starts with two marked points, by
passing to the boundary of the moduli space one is forced to consider more points (now for
a curve of lower genus).

2 Deformations of Lie Algebras

In the physics literature a Lie algebra L is often given in terms of generators and structure
constants. Let V be a finite- or infinite dimensional complex vector space with basis {Ta}a∈J

then a Lie algebra structure on V can be given by the structure equations, i.e. the Lie bracket,

[Ta,Tb] =
∑

c∈J

′
Cc

a,bTc, a, b ∈ J, (2.1)

with structure constants Cc
a,b ∈ C. The symbol

∑′ denotes that for fixed a, b ∈ J only for
finitely many c the coefficient Cc

a,b �= 0. In terms of structure constants the necessary and
sufficient conditions for L being a Lie algebra (i.e. the anti-symmetry and the Jacobi iden-
tity) can be written as

Cc
a,b + Cc

b,a = 0, a, b, c ∈ J,

∑

l∈J

(Cl
a,bC

d
l,c + Cl

b,cC
d
l,a + Cl

c,aC
d
l,b) = 0, a, b, c, d ∈ J.

(2.2)

Deforming the Lie algebra structure corresponds intuitively to making the system of coeffi-
cients {Cc

a,b} depending on one or more parameters.
In a more compact manner a Lie algebra L, i.e. its bracket [., .], might be written with an

anti-symmetric bilinear form

μ0 : L×L → L, μ0(x, y) = [x, y],
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fulfilling certain additional conditions corresponding to the Jacobi identity. Consider on the
same vector space L is modeled on, a family of Lie structures

μt = μ0 + t · φ1 + t2 · φ2 + · · · , (2.3)

with bilinear maps φi : L×L → L such that Lt := (L,μt ) is a Lie algebra and L0 is the Lie
algebra we started with. The family {Lt } is a deformation of L0.

Up to this point we did not specify the “parameter” t . Indeed, different choices are pos-
sible.

(1) The parameter t might be a variable which allows to plug in numbers α ∈ C. In this
case Lα is a Lie algebra for every α for which the expression (2.3) is defined. The
family can be considered as deformation over the affine line C[t] or over the convergent
power series C{{t}}. The deformation is called a geometric or an analytic deformation
respectively.

(2) We consider t as a formal variable and we allow infinitely many terms in (2.3). It might
be the case that μt does not exist if we plug in for t any other value different from 0.
In this way we obtain deformations over the ring of formal power series C[[t]]. The
corresponding deformation is a formal deformation.

(3) The parameter t is considered as an infinitesimal variable, i.e. we take t2 = 0. We obtain
infinitesimal deformations defined over the quotient C[X]/(X2) = C[[X]]/(X2).

We could even consider more general situations for the parameter space. See Appendix 1
for a general mathematical definition of a deformation.

There is always the trivially deformed family given by μt = μ0 for all values of t . Two
families μt and μ′

t deforming the same μ0 are equivalent if there exists a linear automor-
phism (with the same vagueness about the meaning of t )

ψt = id + t · α1 + t2 · α2 + · · · (2.4)

with αi : L → L linear maps such that

μ′
t (x, y) = ψ−1

t (μt (ψt (x),ψt (y))). (2.5)

A Lie algebra (L,μ0) is called rigid if every deformation μt of μ0 is locally equivalent to
the trivial family. Intuitively, this says that L cannot be deformed.

The word “locally” in the definition of rigidity means that we only consider the situation
for t “near 0”. Of course, this depends on the category we consider. As on the formal and the
infinitesimal level there exists only one closed point, i.e. the point 0 itself, every deformation
over C[[t]] or C[X]/(X2) is already local. This is different on the geometric and analytic
level. Here it means that there exists an open neighborhood U of 0 such that the family
restricted to it is equivalent to the trivial one. In particular, this implies Lα

∼= L0 for all
α ∈ U .

Clearly, a question of fundamental interest is to decide whether a given Lie algebra is
rigid. Moreover, the question of rigidity will depend on the category we consider. Depending
on the set-up we will have to consider infinitesimal, formal, geometric, and analytic rigidity.
If the algebra is not rigid, one would like to know whether there exists a moduli space of
(inequivalent) deformations. If so, what is its structure, dimension, etc.?

As explained in the introduction, deformation problems and moduli space problems are
related to adapted cohomology theories. To a certain extend (in particular for the finite-
dimensional case) this is also true for deformations of Lie algebras. But as far as geometric
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and algebraic deformations are concerned it is wrong for infinite dimensional Lie algebras
as our examples show.

The corresponding relations to cohomology will be explained in Sect. 3. To see later
why the results are different in the infinite dimensional case, let us first discuss the finite-
dimensional case. Let L be a finite-dimensional Lie algebra of dimension n over C and de-
note the underlying vector space by V . The structure constants from (2.1) {Cc

a,b}a,b,c=1,...,n

are elements of C
n3

. The conditions (2.2), which are necessary and sufficient that (2.1) de-
fines a Lie algebra, are algebraic equations. The vanishing set Lalgn (i.e. the set of common
zeros of these equations) in C

n3
“parameterizes” the possible Lie algebra structures on the n-

dimensional vector space V . As the conditions are algebraic the vanishing set will be a (not
necessarily irreducible) variety. In fact it would be better to talk about Lalgn as a scheme, as
one should better consider the not necessarily reduced structure on Lalgn.

The Lie structure μ is a bilinear map V × V → V and the structure constants might be
considered as elements of V ∗ ⊗ V ∗ ⊗ V with V ∗ the dual space of V .

If we make a change of basis, the structure constants will change. The two set of structure
constants will define isomorphic Lie algebras. The corresponding effect can be described by
a linear automorphism Φ ∈ Gl(V ). It will define an action on V ∗ ⊗ V ∗ ⊗ V by

(Φ � μ)(x, y) = Φ(μ(Φ−1(x),Φ−1(y))). (2.6)

If μ corresponds to a Lie algebra structure, Φ � μ will also be a Lie algebra. Hence Φ� will
be an action on Lalgn

The Lie algebras (V ,μ) and (V ,μ′) are isomorphic iff μ and μ′ are in the same orbit
under this Gl(V ) action. On the level of structure constants, i.e. after fixing a basis in V ,
we obtain a Gl(n) action on Lalgn. In this way the isomorphy classes of Lie algebras of
dimension n correspond exactly to the Gl(n) orbits of Lalgn.

The variety Lalgn decomposes into different orbits under the Gl(n)-action. Let x0 be a
point in Lalgn (defining the Lie structure μ0). All “nearby” Lie structures μ correspond to
points x near x0. Of course the Gl(n) orbit of x0 passes through x0. If all points in an open
neighborhood of x0 lie in this orbit then this implies that all “nearby” Lie structures μt are
isomorphic to μ0. A Lie algebra is called rigid in the orbit sense, if the corresponding orbit
is Zariski open in Lalgn.1 In particular, rigidity in the orbit sense implies rigidity in the
geometric and analytic sense.

Intuitively the “moduli space” of finite-dimensional Lie structures should correspond to
the orbit space under the Gl(n)-action. But as in the boundary of certain orbits there might
be different orbits this will need some modification. Indeed, the problem of the geometric
structure of the “moduli space” is rather delicate and as we will not need it here, we will not
discuss it, see Bjar and Laudal [2].

Back to our Lie algebras of arbitrary dimensions. Special types of deformations are jump
deformations. They are typically given as families over a parameter space (parameterized
e.g. by t ) around 0, such that Lt

∼= Lt ′ as long as t, t ′ �= 0, but Lt �∼= L0. In the finite-
dimensional case, considered above, the element L0 will be necessarily a boundary point
of the orbit of Lt , t �= 0 which does not lie in the orbit itself. This says it is an element in
the Zariski closure of the orbit but not of the orbit itself. Sometimes in physics one talks
about contractions. This language is dual to the language of jump deformations. Here L0 is

1A subset is called Zariski open if it is the complement of the vanishing set of finitely many algebraic equa-
tions. Zariski open subset are always open in the usual topology.
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a contraction of the isomorphy type of Lt , t �= 0. Moreover, in the finite-dimensional case
the possible contractions of L are given by the boundary points of its Gl(n) orbit.

3 Cohomological Description

For Lie algebra deformations the relevant cohomology space is H2(L,L), the space of Lie
algebra two-cohomology classes with values in the adjoint module L.

Recall that these cohomology classes are classes of two-cocycles modulo coboundaries.
An antisymmetric bilinear map φ : L × L → L is a Lie algebra two-cocycle if d2φ = 0, or
expressed explicitly

φ([x, y], z) + φ([y, z], x) + φ([z, x], y) − [x,φ(y, z)] + [y,φ(z, x)]
− [z,φ(x, y)] = 0. (3.1)

The map φ will be a coboundary if there exists a linear map ψ : L → L with

φ(x, y) = (d1ψ)(x, y) := ψ([x, y]) − [x,ψ(y)] + [y,ψ(x)]. (3.2)

If we write the Jacobi identity for μt given by (2.3) then it can be immediately verified that
the first non-vanishing φi has to be a two-cocycle in the above sense. Furthermore, if μt and
μ′

t are equivalent then the corresponding φi and φ′
i are cohomologous, i.e. their difference

is a coboundary.
The following results are well-known:

(1) H2(L,L) classifies infinitesimal deformations of L [8–10].
(2) If dim H2(L,L) < ∞ then all formal deformations of L up to equivalence can be real-

ized in this vector space [5].
(3) If H2(L,L) = 0 then L is infinitesimally and formally rigid (this follows directly from

(1) and (2)).
(4) If dimL < ∞ then H2(L,L) = 0 implies that L is also rigid in the geometric and ana-

lytic sense [8–10, 15, 16].

As our examples show, without the condition dimL < ∞ point 3 is not true anymore.
For the Witt algebra W one has H2(W,W) = 0 ([4], see also [6]). Hence it is formally

rigid. For the classical current algebras ḡ = g⊗C[z−1, z] with g a finite-dimensional simple
Lie algebra, Lecomte and Roger [14] showed that ḡ is formally rigid. Nevertheless, for both
types of algebras, including their central extensions, we obtained deformations which are
both locally geometrically and analytically non-trivial [6, 7]. Hence they are not rigid in the
geometric and analytic sense. These families will be described in the following.

4 Krichever–Novikov Algebras

Our geometric families will be families of algebras of Krichever–Novikov type. These alge-
bras play an important role in a global operator approach to higher genus Conformal Field
Theory.

They are generalizations of the Virasoro algebra, the current algebras and all their related
algebras. Let M be a compact Riemann surface of genus g, or in terms of algebraic geometry,
a smooth projective curve over C. Let N,K ∈ N with N ≥ 2 and 1 ≤ K < N . Fix

I = (P1, . . . ,PK), and O = (Q1, . . . ,QN−K)
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disjoint ordered tuples of distinct points (“marked points”, “punctures”) on the curve. In
particular, we assume Pi �= Qj for every pair (i, j). The points in I are called the in-points,
the points in O the out-points. Sometimes we consider I and O simply as sets and set
A = I ∪ O as a set.

Here we will need the following algebras. Let A be the associative algebra consisting
of those meromorphic functions on M which are holomorphic outside the set of points A

with point-wise multiplication. Let L be the Lie algebra consisting of those meromorphic
vector fields which are holomorphic outside of A with the usual Lie bracket of vector fields.
The algebra L is called the vector field algebra of Krichever–Novikov type. In the two point
case they were introduced by Krichever and Novikov [11–13]. The corresponding general-
ization to the multi-point case was done in [18–21]. Obviously, both A and L are infinite
dimensional algebras.

Furthermore, we will need the higher-genus multi-point current algebra of Krichever–
Novikov type. We start with a complex finite-dimensional Lie algebra g and endow the tensor
product G = g ⊗C A with the Lie bracket

[x ⊗ f,y ⊗ g] = [x, y] ⊗ f · g, x, y ∈ g, f, g ∈ A. (4.1)

The algebra G is the higher genus current algebra. It is an infinite dimensional Lie alge-
bra and might be considered as the Lie algebra of g-valued meromorphic functions on the
Riemann surface with only poles outside of A.

The classical genus zero and N = 2 point case is given by the geometric data

M = P
1(C) = S2, I = {z = 0}, O = {z = ∞}. (4.2)

In this case the algebras are the well-known algebras of Conformal Field Theory (CFT).
For the function algebra we obtain A = C[z−1, z], the algebra of Laurent polynomials. The
vector field algebra L is the Witt algebra W generated by

ln = zn+1 d

dz
, n ∈ Z, with Lie bracket [ln, lm] = (m − n) ln+m. (4.3)

The current algebra G is the standard current algebra ḡ = g ⊗ C[z−1, z] with Lie bracket

[x ⊗ zn, y ⊗ zm] = [x, y] ⊗ zn+m, x, y ∈ g, n,m ∈ Z. (4.4)

In the classical situation the algebras are obviously graded by taking as degree deg ln := n

and degx ⊗ zn := n. For higher genus there is usually no grading. But it was observed by
Krichever and Novikov in the two-point case that a weaker concept, an almost-graded struc-
ture, will be enough to develop an interesting theory of representations (Verma modules,
etc.). Let A be an (associative or Lie) algebra admitting a direct decomposition as vector
space A = ⊕

n∈Z
An. The algebra A is called an almost-graded algebra if (1) dimAn < ∞

and (2) there are constants R and S such that

An ·Am ⊆
n+m+S⊕

h=n+m+R

Ah, ∀n,m ∈ Z. (4.5)

The elements of An are called homogeneous elements of degree n. By exhibiting a special
basis, for the multi-point situation such an almost grading was introduced in [18–21]. Es-
sentially, this is done by fixing the order of the basis elements at the points in I in a certain
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manner and in O in a complementary way to make them unique up to scaling. In the fol-
lowing we will give an explicit description of the basis elements for those genus zero and
one situation we need. Hence, we will not recall their general definition but only refer to the
above quoted articles.

Proposition 4.1 ([18, 21]) The algebras L, A, and G are almost-graded. The almost-
grading depends on the splitting A = I ∪ O .

In the construction of infinite dimensional representations of these algebras with certain
desired properties (generated by a vacuum, irreducibility, unitarity, etc.) one is typically
forced to “regularize” a “naive” action to make it well-defined. Examples of importance in
CFT are the fermionic Fock space representations which are constructed by taking semi-
infinite forms of a fixed weight.

From the mathematical point of view, with the help of a prescribed procedure one mod-
ifies the action to make it well-defined. On the other hand, one has to accept that the mod-
ified action in compensation will only be a projective Lie action. Such projective actions
are honest Lie actions for suitable centrally extended algebras. In the classical case they are
well-known. The unique non-trivial (up to equivalence and rescaling) central extension of
the Witt algebra W is the Virasoro algebra V :

[ln, lm] = (m − n)ln+m + 1

12
(m3 − m)δn,−m t, [ln, t] = 0. (4.6)

Here t is an additional element of the central extension which commutes with all other
elements. For the current algebra g ⊗ C[z−1, z] for g a simple Lie algebra with Cartan–
Killing form β , it is the corresponding affine Lie algebra ĝ (or, untwisted affine Kac–Moody
algebra):

[x ⊗ zn, y ⊗ zm] = [x, y] ⊗ zn+m − β(x, y) · n · δ−n
m · t,

[t, ĝ] = 0, x, y ∈ g, n,m ∈ Z.
(4.7)

The additional terms in front of the elements t are 2-cocycles of the Lie algebras with values
in the trivial module C. Indeed, for a Lie algebra V central extensions are classified (up to
equivalence) by the second Lie algebra cohomology H2(V ,C) of V with values in the trivial
module C. Similar to the above, the bilinear form ψ : V × V → C is called Lie algebra 2-
cocycle iff ψ is antisymmetric and fulfills the cocycle condition

0 = d2ψ(x, y, z) := ψ([x, y], z) + ψ([y, z], x) + ψ([z, x], y). (4.8)

It will be a coboundary if there exists a linear form κ : V → C such that

ψ(x, y) = (d1κ)(x, y) := κ([x, y]). (4.9)

To extend the classical cocycles to the Krichever–Novikov type algebras they first have to
be given in geometric terms. Geometric versions of the 2-cocycles are given as follows (see
[24] and [25] for details). For the vector field algebra L we take

γS,R(e, f ) := 1

24π i

∫

CS

(
1

2
(e′′′f − ef ′′′) − R · (e′f − ef ′)

)
dz. (4.10)
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Here the integration path CS is a loop separating the in-points from the out-points and R is
a holomorphic projective connection (see [6, Def. 4.2]) to make the integrand well-defined.
For the current algebra G we take

γS(x ⊗ f,y ⊗ g) = β(x, y)
1

2π i

∫

CS

f dg. (4.11)

The reader should be warned. For the classical algebras, i.e. the Witt and the current algebras
for the simple Lie algebras g, there exists up to rescaling and equivalence only one non-
trivial central extension. This will be the Virasoro algebra for the Witt algebra and the affine
Kac–Moody algebra for the current algebra respectively. This is not true anymore for higher
genus or/and the multi-point situation. But it was shown in [24] and [25] that (again up to
equivalence and rescaling) there exists only one non-trivial central extension which allows
to extend the almost-grading by giving the element t a degree in such a way that it will also
be almost-graded. This unique extension will be given by the geometric cocycles (4.10),
(4.11).

5 The Geometric Families

5.1 Complex Torus

Let τ ∈ C with �τ > 0 and L be the lattice

L = 〈1, τ 〉Z := {m + n · τ | m,n ∈ Z} ⊂ C. (5.1)

The complex one-dimensional torus is the quotient T = C/L. It carries a natural structure of
a complex manifold coming from the structure of C. It will be a compact Riemann surface
of genus 1.

The field of meromorphic functions on T is generated by the doubly-periodic Weierstraß
℘ function and its derivative ℘ ′ fulfilling the differential equation

(℘ ′)2 = 4(℘ − e1)(℘ − e2)(℘ − e3) = 4℘3 − g2℘ − g3, (5.2)

with

� := g2
3 − 27g3

2 = 16(e1 − e2)
2(e1 − e3)

2(e2 − e3)
2 �= 0. (5.3)

Furthermore,

g2 = −4(e1e2 + e1e3 + e2e3), g3 = 4(e1e2e3). (5.4)

The numbers ei are pairwise distinct, can be given as

℘

(
1

2

)
= e1, ℘

(
τ

2

)
= e2, ℘

(
τ + 1

2

)
= e3, (5.5)

and fulfill

e1 + e2 + e3 = 0. (5.6)

The function ℘ is an even meromorphic function with poles of order two at the points
of the lattice and holomorphic elsewhere. The function ℘ ′ is an odd meromorphic function
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with poles of order three at the points of the lattice and holomorphic elsewhere. ℘ ′ has zeros
of order one at the points 1/2, τ/2 and (1 + τ)/2 and all their translates under the lattice.

We have to pass here to the algebraic-geometric picture. The map

T → P
2(C), z mod L �→

{
(℘ (z) : ℘ ′(z) : 1), z /∈ L,

(0 : 1 : 0), z ∈ L
(5.7)

realizes T as a complex-algebraic smooth curve in the projective plane. As its genus is one
it is an elliptic curve. The affine coordinates are X = ℘(z, τ ) and Y = ℘ ′(z, τ ). From (5.2)
it follows that the affine part of the curve can be given by the smooth cubic curve defined by

Y 2 = 4(X − e1)(X − e2)(X − e3) = 4X3 − g2X − g3 =: f (X). (5.8)

The point at infinity on the curve is the point ∞ = (0 : 1 : 0).
We consider the algebras of Krichever–Novikov type corresponding to the elliptic curve

and possible poles at z̄ = 0̄ and z̄ = 1/2 2 (respectively in the algebraic-geometric picture,
at the points ∞ and (e1,0)).

5.2 Vector Field Algebra

First we consider the vector field algebra L. A basis of the vector field algebra is given by

V2k+1 := (X − e1)
kY

d

dX
, V2k := 1

2
f (X)(X − e1)

k−2 d

dX
, k ∈ Z. (5.9)

If we vary the points e1 and e2 (and accordingly e3 = −(e1 + e2)) we obtain families of
curves and associated families of vector field algebras. At least this is the case as long as
the curves are non-singular. To describe the families in detail consider the following straight
lines

Ds := {(e1, e2) ∈ C
2 | e2 = s · e1}, s ∈ C, D∞ := {(0, e2) ∈ C

2}, (5.10)

and the open subset

B = C
2 \ (D1 ∪ D−1/2 ∪ D−2) ⊂ C

2. (5.11)

The curves are non-singular exactly over the points of B . Over the exceptional Ds at least
two of the ei are the same. For the vector field algebra we obtain

[Vn,Vm] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(m − n)Vn+m, n,m odd,

(m − n)
(
Vn+m + 3e1Vn+m−2

+ (e1 − e2)(e1 − e3)Vn+m−4
)
, n,m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+ (m − n − 2)(e1 − e2)(e1 − e3)Vn+m−4, n odd, m even.

(5.12)

In fact these relations define Lie algebras for every pair (e1, e2) ∈ C
2. We denote by L(e1,e2)

the Lie algebra corresponding to (e1, e2). Obviously, L(0,0) ∼= W .

2Here z̄ does not denote conjugation, but taking the residue class modulo the lattice.
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Proposition 5.1 ([6, Proposition 5.1]) For (e1, e2) �= (0,0) the algebras L(e1,e2) are not
isomorphic to the Witt algebra W , but L(0,0) ∼= W .

If we restrict our two-dimensional family to a line Ds (s �= ∞) then we obtain a one-
dimension family

[Vn,Vm] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(m − n)Vn+m, n,m odd,

(m − n)
(
Vn+m + 3e1Vn+m−2

+ e2
1(1 − s)(2 + s)Vn+m−4

)
, n,m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+ (m − n − 2)e2
1(1 − s)(2 + s)Vn+m−4, n odd, m even.

(5.13)

Here s has a fixed value and e1 is the deformation parameter. (A similar family exists for
s = ∞.) It can be shown that as long as e1 �= 0 the algebras over two points in Ds are
pairwise isomorphic but not isomorphic to the algebra over 0, which is the Witt algebra.
Using the result H2(W,W) = {0} of Fialowski [4] we get

Theorem 5.2 Despite its infinitesimal and formal rigidity the Witt algebra W admits defor-
mations Lt over the affine line with L0

∼= W which restricted to every (Zariski or analytic)
neighborhood of t = 0 are non-trivial.

The one-dimensional families (5.13) are examples of jump deformations as Lt
∼= Lt ′ for

t, t ′ �= 0. The isomorphism is given by rescaling the basis elements. This is possible as long
as e1 �= 0. In fact, using V ∗

n = (
√

e1)
−nVn (for s �= ∞) we obtain for e1 always the algebra

with e1 = 1 in the structure equations (5.13).
Using the cocycle (4.10) in the families (5.12), (5.13) a central term can be easily in-

corporated. With respect to the flat coordinate z − a we can take the projective connection
R ≡ 0. The integral along a separating cocycle CS is obtained by taking the residue at z = 0.
In this way we obtain geometric families of deformations for the Virasoro algebra. They are
locally non-trivial despite the fact that the Virasoro algebra is formally rigid.

5.3 A Family Which is Not a Jump Deformation

Let us stress the fact that the two-dimensional family (5.12) is not a jump deformation.
In fact there exist even one-dimensional deformations as subfamilies which are not jump
deformations. Take for example the smooth rational curve given by

C := {(e1, e2) ∈ C | e2 = 2e2
1, e1 ∈ C}. (5.14)

The rational parameter will be e1. Automatically we have e3 = −(1 + 2e1)e1.
The curve passes through (0,0). For every line Ds there will be just one other point

of intersection with C. Its parameter value is given by e1 = 1/2s. Hence for e1 small the
curve will not meet the exceptional lines Ds, s = 1,−1/2,−2 a second time. The curves
corresponding to small e1 �= 0 values will be nonsingular cubics, i.e. elliptic curves.

The elliptic modular function classifying elliptic curves up to isomorphisms is given by

j = 1728
g3

2

�
. (5.15)
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Expressing the j -function in terms of ei , i = 1,2,3 and substituting e3 = −(e1 + e2) yields

j (e1, e2) = 1728
4(e2

1 + e1e2 + e2
2)

3

(e1 − e2)2(2e1 + e2)2(e1 + 2e2)2
. (5.16)

First we evaluate this along Ds , s �= 1,−1/2,−2 and obtain

j (s, e1) = 1728
4(1 + s + s2)3

(1 − s)2(2 + s)2(1 + 2s)2
, j (∞) = 1728. (5.17)

As this does not depend on the parameter e1 anymore it follows that the elliptic curves over
Ds \ {0} for a fixed s are isomorphic, in accordance with the fact that these deformations
yield jump deformations. A remark aside: the poles of j (s) correspond exactly to the excep-
tional lines. They correspond to nodal cubics, see Sect. 6.

Next we evaluate j along the curve C and obtain

j (e1) = 1728
(1 + 2e1 + 4e2

1)
3

(1 − 2e1)2(1 + e1)2(1 + 4e1)2
. (5.18)

This value will not be constant along C. Furthermore, for small e1 the values will be
different. This implies that the elliptic curves will be pairwise non-isomorphic. The vec-
tor field algebras along this curve in the neighborhood of 0 will also be pairwise non-
isomorphic.

By specializing e2 = 2e2
1 and e3 = −e1(1 + 2e1) in (5.12) we obtain for the vector field

algebra

[Vn,Vm] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(m − n)Vn+m, n,m odd,

(m − n)
(
Vn+m + 3e1Vn+m−2

+ 2e1(1 − 2e1)(1 + e1)Vn+m−4

)
, n,m even,

(m − n)Vn+m + (m − n − 1)3e1Vn+m−2

+ (m − n − 2)2e1(1 − 2e1)(1 + e1)Vn+m−4, n odd, m even.

(5.19)

5.4 The Current Algebra

Let g be a simple finite-dimensional Lie algebra (similar results are true for general Lie alge-
bras) and A the algebra of meromorphic functions corresponding to the geometric situation
discussed above. A basis for A is given by

A2k = (X − e1)
k, A2k+1 = 1

2
Y · (X − e1)

k−1, k ∈ Z. (5.20)

We calculate for the elements of G

[x ⊗ An,y ⊗ Am] =

⎧
⎪⎨

⎪⎩

[x, y] ⊗ An+m, n or m even,

[x, y] ⊗ An+m + 3e1[x, y] ⊗ An+m−2

+(e1 − e2)(2e1 + e2)[x, y] ⊗ An+m−4, n and m odd.

(5.21)

If we let e1 and e2 (and hence also e3) go to zero we obtain the classical current algebra
as degeneration. Again it can be shown that the family, even if restricted on Ds , is locally
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non-trivial, see [7]. Recall that by results of Lecomte and Roger [14] the current algebra
is formally rigid if g is simple. But our families show that it is neither geometrically nor
analytically rigid.

The families over Ds are jump deformations. But again there exists one-dimensional
subfamilies of deformations of (5.21) which are non-trivial and not jump deformations.

Also in this case we can construct families of centrally extended algebras by considering
the cocycle (4.11). In this way we obtain non-trivial deformation families for the formally
rigid classical affine algebras of Kac–Moody type. The cocycle (4.11) is

γ (x ⊗ An,y ⊗ Am) = p(e1, e2) · β(x, y) · 1

2π i

∫

CS

AndAm. (5.22)

Here p(e1, e2) is an arbitrary polynomial in the variables e1 and e2. and β the Cartan–Killing
form. The integral can be calculated [7, Theorem 4.6] as

1

2π i

∫

CS

AndAm =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−nδ−n
m , n, m even,

0, n, m different parity,

−nδ−n
m + 3e1(−n + 1)δ−n+2

m

+ (e1 − e2)(2e1 + e2)(−n + 2)δ−n+4
m , n, m odd.

(5.23)

6 The Geometric Interpretation

If we take e1 = e2 = e3 in the definition of the cubic curve (5.8) we obtain the cuspidal cubic
EC with affine part given by the polynomial Y 2 = 4X3. It has a singularity at (0,0) and the
desingularization is given by the projective line P

1(C). This says there exists a surjective
(algebraic) map πC : P

1(C) → EC which outside the singular point is 1 : 1. Over the cusp
lies exactly one point. The vector fields, resp. the functions, resp. the g-valued functions
can be degenerated to EC and pull-backed to vector fields, resp. functions, resp. g-valued
functions on P

1(C). The point (e1,0) where a pole is allowed moves to the cusp. The other
point stays at infinity. In particular by pulling back the degenerated vector field algebra we
obtain the algebra of vector fields with two possible poles, which is the Witt algebra. And
by pulling back the degenerated current algebra we obtain the classical current algebra.

The exceptional lines Ds for s = 1,−1/2,−2 are related to interesting geometric situa-
tions. Above Ds \ {(0,0)} with these values of s, two of the ei are the same, the third one
remains distinct. The curve will be a nodal cubic EN defined by Y 2 = 4(X − e)2(X − e).
The singularity will be a node with the coordinates (e,0). Again the desingularization will
be the projective line πN : P

1(C) → EN . But now above the node there will be two points in
P

1(C). For the pull-backs we have the following two situations:

(1) If s = 1 or s = −2 then e = e1 and the node is a possible point for a pole. We obtain
objects on P

1(C) which beside the pole at ∞ might have poles at two other places.
Hence, we obtain a three-point Krichever–Novikov algebra of genus 0.

(2) If s = −1/2 then at the node there is no pole. The number of possible poles for the
pull-back remains two. We obtain certain subalgebras of the classical two point case.
Additionally, for the vector field case we have to pay attention to the fact that the vector
fields obtained by pull-back acquire zeros at the points lying above the node.
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These algebras were identified and studied in detail in [6, 7, 22].
The deformed families are of importance for the quantization of conformal field theories.

In this context the behavior of objects when we approach the boundary of the moduli space
of curves with marked points has to be studied.
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Appendix 1 Definition of a Deformation

In the following we will assume that A is a commutative algebra over K (where K is a
field of characteristic zero) which admits an augmentation ε : A → K. This says that ε is a
K-algebra homomorphism, e.g. ε(1A) = 1. The ideal mε := Ker ε is a maximal ideal of A.
Vice versa, given a maximal ideal m of A with A/m ∼= K, the natural quotient map defines
an augmentation.

If A is a finitely generated K-algebra over an algebraically closed field K then A/m ∼= K

is true for every maximal ideal m. Hence, in this case every such A admits at least one
augmentation and all maximal ideals are coming from augmentations.

Let us consider a Lie algebra L over the field K, ε a fixed augmentation of A, and
m = Ker ε the associated maximal ideal.

Definition 7.1 ([5]) A deformation λ of L with base (A,m) or simply with base A, is a Lie
A-algebra structure on the tensor product A ⊗K L with bracket [., .]λ such that

ε ⊗ id : A ⊗L → K ⊗L = L (7.1)

is a Lie algebra homomorphism.
Specifically, it means that for all a, b ∈ A and x, y ∈ L,

(1) [a ⊗ x, b ⊗ y]λ = (ab ⊗ id)[1 ⊗ x,1 ⊗ y]λ,
(2) [., .]λ is skew-symmetric and satisfies the Jacobi identity,
(3) ε ⊗ id([1 ⊗ x,1 ⊗ y]λ) = 1 ⊗ [x, y].

By Condition (1) to describe a deformation it is enough to give the elements [1 ⊗ x,

1 ⊗ y]λ for all x, y ∈ L. If B = {zi}i∈J is a basis of L it follows from Condition (3) that the
Lie product has the form

[1 ⊗ x,1 ⊗ y]λ = 1 ⊗ [x, y] +
∑

i

′
ai ⊗ zi, (7.2)

with ai = ai(x, y) ∈ m, zi ∈ B . Here
∑′ denotes a finite sum. Clearly, Condition (2) is an

additional condition which has to be satisfied.
If we use A = C[t] we get exactly the notion of a one parameter geometric deformation

discussed above.
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A deformation is called trivial if A ⊗K L carries the trivially extended Lie structure, i.e.
(7.2) reads as [1 ⊗ x,1 ⊗ y]λ = 1 ⊗ [x, y].

Two deformations of a Lie algebra L with the same base A are called equivalent if there
exists a Lie algebra isomorphism between the two copies of A ⊗L with the two Lie algebra
structures, compatible with ε ⊗ id.

Formal deformations are defined in a similar way. Let A be a complete local algebra over

K, so A = ←−−−−
limn→∞(A/mn), where m is the maximal ideal of A. Furthermore, we assume

that A/m ∼= K, and dim(mk/mk+1) < ∞ for all k.

Definition 7.2 ([3]) A formal deformation of L with base A is a Lie algebra structure on

the completed tensor product A ⊗̂L = ←−−−−
limn→∞((A/mn) ⊗L) such that

ε ⊗̂ id : A ⊗̂L → K ⊗L = L (7.3)

is a Lie algebra homomorphism.

If A = C[[t]], then a formal deformation of L with base A is the same as a formal one
parameter deformation discussed above. There is an analogous definition for equivalence of
deformations parameterized by a complete local algebra.
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